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The effect of a steady drift on the dispersion of a particle 
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The effect of a steady deterministic drift on the dispersion of particles suspended in 
a stationary homogeneous turbulent field is examined using previously reported 
closed equations of the mean-squared particle displacement. The existence of negative 
particle velocity correlations is demonstrated. The dependence of the particle dif- 
fusivity and kinetic energy on the inertia and drift factors is evaluated for a model 
turbulence spectrum. Asymptotic formulae are obtained for the case of dominant 
deterministic motion. The theory is applied to analysis of the experimental data of 
Snyder & Lumley (1971'), and good and consistent agreement with these asymptotic 
formulae was obtained after accounting for the quasi-stationarity of particle velocity 
correlation functions in decaying turbulence. 

1. Introduction 
In  a recent communication (Pismen & Nir 1978 - henceforth referred to as I) we 

have considered the problem of particle motion in a stationary homogeneous turbulent 
field. The closed equation for the mean-squared displacement of the particle, R,,, was 
derived using the independence approximation (Corrsin 1959) and the Gaussian 
property of the turbulent velocity field. The main steps of the derivation are described 
below. 

Consider a particle obeying a linear interaction law 

where y-l is a sealar time constant and ui and vi are the random components of the 
fluid and particle velocities respectively. Equation (1)  can also be written in the 
integral form 

(2) vi = y J; 62-Ht-t') Ui(I.(t'), t ' )  at', 

with r&) = p i ( t ) + q t  

denoting the particle trajectory. pi ( t )  is the random part of the particle displacement, 
with zero mean, while 5 represents a steady deterministic part of the particle velocity, 
relative to the fluid, owing to an external body force. 

Using (2) we obtain the Lagrangian particle velocity correlation tensor 

H,,(t) = l im(vi(~)vi(~+t))  = e-v't-t'l(ui(O,O)uj(r(t'),t'))dt', (3) 
T+m 
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which is evidently connected with the fluid velocity correlation tensor 
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G i j ( W ) ,  t )  = (U,(O,O) q p ( t )  + Vt,  t ) )  

at points lying on a particle trajectory. The angle brackets denote an ensemble average. 
In  the particular cases when the random velocity component of the particle is negligible, 
i.e. y+ 0 or ]Vl $ (v( ,  Gij reduces to the Eulerian correlation function at points lying 
on the particle’s deterministic trajectory t .  This point will be used in the asymptotic 
analysis of 9 3. 

With a Fourier transform of the fluid velocity Gij ( t )  has the form 
m 

Gij = 11 (%@, 0) cj(k’, t )  exp [ - ik’ . p(t)])  exp [ - i k V t ]  d3kd3k, (4) 
--OD 

where Ci(k, t )  is a spectral component. An implementation of Corrsin’s (1959) con- 
jecture and the Gaussian character of the velocity field enables a reduction of (3) and 
(4) to a closed equation connecting the particle mean-squared displacement tensor, 
Rij(t)  = (pi(t)  pj(t)) ,  with measurable Eulerian correlations of the turbulent fluid. (See 
I for a detailed derivation.) Thus 

e+t--t’l &‘jm cos (k . Vt‘) @$)(k, t’) exp [ - ikk : R(t‘)]  d3k, 

( 5 )  
y S _ I m  --a0 

- 2Hp = 
a t 2  

where 
At y+m and V = 0, i.e. when the particle folIows all turbulent pulsations, ( 5 )  

coincides with Lundgren & Pointin’s (1976) equation of the displacement of a fluid 
element. 

The characteristics of random particle motion in an isotropic turbulent field, in 
the absence of an external body force, were calculated in detail in I. This case offers 
the best opportunity for analysing the influence of particle inertia in its pure form, 
free from interference of a superimposed deterministic motion. However, in practical 
situations the latter cannot be ignored and often plays a decisive role in determining 
the particle dispersion. This source of anisotropy is always present in experimental 
studies where the particle attains a steady terminal sedimentation velocity due to 
gravity. 

Yudine (1959) and Csanady (1963) introduced the notion of ‘crossing trajectories’ 
to describe a deterministic gravitational drift, drawing the particle out of the strongly 
correlated fluid environment and thereby reducing the particle diffusivity. This effect 
is quantitatively described by (5) inasmuch as the oscillations of the cosine function 
effectively cut off correlations of the turbulent velocity field at  times exceeding the 
characteristic time scale associated with the deterministic motion. 

It is the purpose of this paper to apply the general approach presented in I to a 
non-isotropic system and to analyse the influence of the deterministic motion due to 
external body forces on the random displacement and kinetic energy of a suspended 
particle. A different procedure equivalent to consecutive iterations of (5) was recently 
used by Reeks (1977) as an extension of Phythian’s (1975) analysis of turbulent self- 
diffusion. 

Although the basic equation (5) cannot be reduced in this case to the scalar form 
studied in I, the presence of a deterministic drift brings certain theoretical advantages 
since it improves the closure approximation by reducing the role of the random 

is the turbulence spectral density and (s) denotes the symmetric part. 
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displacement. Especially simple results, coinciding with Csanady’s (1963) asymptotic 
formulae, can be obtained from (5) in the limiting case when the terminal velocity V 
far exceeds typical velocities of turbulent pulsations. 

In  $ 2  a model turbulence spectrum (Kraichnan 1970) is used to elucidate the 
dependence of characteristics of particle motion on the parameters defining the 
anisotropy due to the deterministic drift. Equation ( 5 )  is reduced to the simplest 
form and then integrated numerically via a procedure similar to the one used earlier 
in I. Asymptotic considerations for arbitrary spectra are presented in 9 3,  where lower 
and upper bounds for the particle diffusivity corresponding to a solution of (5) are 
derived by considering appropriate approximations for the velocity correlation 
equations. In  $ 4  we use this asymptotic approach to analyse the experimental data 
of Snyder & Lumley (1971). A remarkable agreement between the theory and experi- 
ment is obtained after introducing adequate corrections for the non-stationary 
experimental conditions. 

2. A particle in turbulence with a model spectrum 
Consider a turbulent field with Kraichnan’s (1970) model spectrum 

E ( k )  = 16(2/n)#ui k4k;6exp ( -  2k2/k3,  ( 7 )  

where k = (k . k)# and u, is the typical turbulent velocity. The damping factor in 
<Pi, is generally unknown. We have chosen here to relate the decay time of each 
component of the turbulence spectra to its respective wavenumber k (Saffman 1963; 
Weinstock 1978) rather than to use the commonly adopted arbitrary constant decay 
rate k, - hence the exponential factor in (6). 

For a particle suspended in isotropic turbulence yet having a non-zero steady 
deterministic velocity component due to an external force, the system retains axial 
symmetry. The use of (6) and (7) allows the integration with respect to k in ( 5 )  to be 
carried out. Ifp, is a unit vector parallel to the axis of symmetry, the tensorial equations 
for the displacement reduce to 

d2Ri,  00 

- = 4 ~ 7 s  e-ylt-t’l at’s:  k2Qii(k,  t’) dkIO1 cos (Vkt’x) 
at2 - W  I 

[$(l-x2) Rii ( t ’ ) -&( l  - 3xe)p ip jRi j ( t ’ ) ] ]  dx,  

- x2) Rii(t’) - i( 1 - 3x2)pipj  Rij(t’)]) dx , ,  

Q (8) p i p j d t  d2R, = 2 ~ 7 s  
(1  -x2) cos (Vkt’x) 

-Q 

with x = kip i lk .  

It is convenient to use the following variables and parameters: 

y = ktRii ,  ~3 = kip ip jRi j ,  7 = uokot ,  h = Y/uoko,  p = 7, UO /A = hp. 

13-2 
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The first three are simply the displacement and time in a suitable non-dimensional 
form. h is the ratio of turbulence to particle time constants indicating the relative 
importance of inertia, while /3 and p are parameters associated with the anisotropy of 
the system. The ratio of the turbulent velocity to the deterministic part of the particle 
velocity, /3, indicates the significance of the viscous forces relative to the body forces 
acting on the particle. The parameter p is independent of the turbulent velocity and 
has the meaning of a reciprocal Grashoff number typical for the particle-fluid system. 

With the above non-dimensional variables and parameters the relations ( 8 )  can 
be integrated to give 

where 2y1 = y - y3. Note that although the procedure is similar to that used when 
studying the isotropic case in I, (9) do not reduce exactly to the equations used there 
in the limit /3-+ co since the chosen damping factor is different. In the other asymptotic 
case when the deterministic drift far exceeds the characteristic velocity of turbulent 
pulsations and /3-+ 0, the random displacement in the exponents of (5) as well as the 
damping factor in Qij can be neglected. This case will be discussed in detail in the next 
section for general three-dimensional spectra. With Kraichnan's model spectrum the 
relations (8) integrate asymptotically to give the particle velocity correlation functions 
&S 

where 8 = 7//3 = Vk,t .  
The most interesting feature emerging from the solution of (9) and (10) is the 

appearance of negative transverse particle velocity correlations. The reason for their 
existence is that Eulerian fluid velocity correlations are negative over certain regions 
of time in order to satisfy continuity (Hinze 1959). An example of such behaviour, 
compared with the corresponding longitudinal particle velocity correlation functions, 
is shown in figure 1.  In  general, as well as in the asymptotic case, the correlations are 
not self-similar. Negative transverse correlations cannot appear if the integrand 
corresponding to d 2 y , / d ~ ~  in (9) is positive at all times, i.e. if 

Since y1 c y3 while both are o(7) at large times it is evident that the correlations are 
definitely positive if /3 > I /  J2 for all values of p. WhenP-t 0 we deduce, with reference 
to (lo),  that negative correlations are nonetheless prohibited when ,u < 4. 
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FIUURE 1. Normalized particle velocity correlation function (Kraichnan spectrum, p = 2). 
Numbers indicate values of /3. Solid and dashed curves correspond t o  transverse and longitu- 
dinal correlations respectively. 

7 

Figure 2 illustrates a typical dependence of the diffusivity tensor 

on the parameters governing the anisotropy of the system, ,8 and p. In the region 
j3 > O(1) the decline of the components of the diffusivity tensor is mainly due to 
increasing inertia and thus resembles the pattern reported in I for the isotropic case. 
Evidently the ratio of the longitudinal to transverse diffusivity remains near unity. 
When ,8 5 O( 1 )  the effect of the constant drift becomes significant. The deterministic 
velocity component, V, draws the particle out of the strongly correlated fluid element, 
thereby reducing the diffusivity markedly, while the ratio of the diffusion coefficients 
sharply increases towards its ultimate value of 2 at ,8 = 0. If the typical turbulent 
velocity is fixed as a certain fraction of the particle’s deterministic velocity, the 
diffusivity exhibits only a slight dependence on the particle time constant and 
increases mildly with decreasing inertia as is expected. 

A comparison with the results of Reeks (1977) is also incorporated in figure 2. His 
data appear consistently lower than our curves and the difference should be attributed 
mainly to the choice of the damping factors associated with the turbulence spectra. 
As the diffusion process is primarily determined by the long-wave modes (k < k,,), 
our particular choice for the decay factor results in larger diffusivities. 

The random part of the total kinetic energy per unit particle mass 

- d2Rii(0) 
T =  uET = +uE- 

at2 

is depicted in figure 3 for the same choice of the physical parameters. The energies of 
both longitudinal and transversal motion, T3 and TI, are shown. Note that the limit 
j3 = 0 ( A  -+ co a t  fixed p) does not correspond to the case of non-inertial particles in a 
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completely isotropic system and the total energy is less than the maximum value 
T = 3u; associated with the ambient turbulence. When a finite deterministic drift is 
present, the condition indicating the approach to this asymptotic value is p 9 1, 
rather than h 9 1 as reported for the isotropic case. TI is always considerably higher 
than BT3 and, since the particle diffusivity is proportional to the product of theintegral 
time scale and energy, the difference between the longitudinal and transverse dif- 
fusivities must be partly attributed to a higher longitudinal integral time. 

Finally, the dissipation per unit particle mass due to the random part of the motion, 
viz * 

can also be evaluated from (9). Q passes through a maximum with increasing particle 
inertia, as in the case of no deterministic motion described in I. 

3. Asymptotic considerations for general spectra 
As was mentioned in the previous section, when uo < V the exponents containing 

the random displacement in ( 5 ) ,  as well as the damping factor in Q i j ( k , t ) ,  can be 
neglected. The fluid correlations are approximated by the Eulerian velocity cor- 
relations along the deterministic particle drift. 

Evidently the Gaussian property and Corrsin’s conjecture need not be employed 
in this case. The exceptionally simpIe asymptotic form of the tensorial equation (5), 

enables a straightforward integration. Thus, for 
spectrum E(k)  with the normalization condition 

Iom E ( k ) d k  = #ug 

and the Eulerian length scale 

the asymptotic form of the diffusivity tensor becomes 

kt’) (Dij(k) d3k, (15) 

any three-dimensional energy 

(18) is a rederivation of Csanady’s (1963) asymptotic formulae and is valid regardless 
of the particle inertia or relationship between the Eulerian and Lagrangian turbulent 
velocity correlations. The next approximation, with the damping factor in Qi,(k, t )  
still neglected, is 

(19) 

and it still asymptotically coincides with Csanady’s formula for the longitudinal 

Dij = 2 uo ~ B [ ( ’ + P ’ ) ~ i j +  ( 1 - 2 P z ) ~ i ~ j + O ( P 4 ) I ,  

diffusivity , namely 
D i j p i p j  = V (1  +g2)+, 
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1/(1 + P ,  P/(1 + P) 
RGURE 2. Transverse (Dl) and longitudinal (4) particle diffusivities (Kraichnan spectrum). 
(4 p = ;, - , exact; -. -, equation (15); ---, equation (21),  ( b )  /3 = 9. 0 and A correspond 
to Reeks results for Dl and 4 respectively. 

when r = 1/42. Such a comparison is no longer possible for higher-order terms in the 
expansion (19) since, by virtue of the original equation (15), they include integrals 
of the type k”E(k) dk ( n  2 1) and hence depend on details of the spectrum which do 
not enter into Csanady’s formulae. 

It is clear that the use of (15) as an approximation to (9) results in an over-estimation 
of the characteristic diffusion coefficient expected from a solution of (5). Such an 
upper bound calculated from (19) is shown in figure 2(a )  for the region /3 < 1.  

Another bound for diffusivity can be obtained by replacing Rij(t)  on the right-hand 
side of ( 5 )  by its long-time asymptote 

This approximation is an appealing alternative to  omitting the exponent in (5) 
altogether, and yields the ‘ self-consistent ’ tensorial equation 

Rij(t)  = 2Dijt. (21) 

Dij  = ty/om d tJm e-ylt-t’l dt‘Jrrn cos ( k  . Vt’) cDij(k, t ’ )  exp [ - t’kk : D] d3k (22) 
-03 

for the diffusivity tensor. 
The self-consistent character of (22) suggests possible application of this equation 

far from the asymptotic region. Indeed, Salu & Montgomery (1977) applied this 
approach to the isotropic problem of turbulent self-diffusion (V = 0, y -+ 00, Dij = DSij), 
obtaining the expression 

D = Iom dtfom 277k2Qii(k, t )  e-kxDtdk, 

which, upon neglect of the damping factor in Qii(k, t )  and integration, yields 

D = (1 k-2E(k) dk)). (24) 

It should be pointed out that, since Dt > QRii(t), (23) always underestimates the value 
of the diffusivity. Furthermore, returning to (22) with finite y and integrating over 
t gives 

lim Di, = Iom d t ’ s  O0 cos (V . kt’) cDij(k) exp [ - t’kk : D] d3k, (25) 
t - m  --m 
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FIGURE 3. Kinetic energy of the particle random motion (Kraichnan spectrum). 
(a) p = 2, ( b )  P = d.. 

a result independent of y ,  the inertia parameter! The exact values, although varying 
rather mildly with ,u for fixed p (see figure 2 b) ,  areindependent of inertia only at  /I -+ 0. 
Thus, the error increases with increasing inertia effects. 

Figure 2 (a) shows the diffusivities evaluated from the self-consistent equation (25) 
as lower bounds to the exact solution of ( 5 )  when CD,, corresponds to Kraichnan’s 
model. As expected, the approximation holds over the entire range of ,8 and improves 
considerably aa /I diminishes. 

4. Analysis of the experiment of Snyder & Lumley 
The most comprehensive data on particle dispersion in turbulence are those reported 

by Snyder & Lumley (1971). Measurements of the characteristics of the supporting 
turbulent field were incorporated, thereby laying the basis for a comparison with 
theoretical results. 

The first step in the analysis of the experiments involves modification of the reported 
turbulent energy spectrum. The latter lacks information on its long-wave part, which 
is known to influence strongly the particle dispersion. Furthermore, only the transverse 
spectrum, El(k) ,  was reported, rather than the three-dimensional spectrum E ( k )  
needed for a comparison with the theory. These two obstacles are overcome by 
assuming that E (k) is of the von KQrmQn-Pao form 

suggested by Helland, Van Atta & Stegen (1977), where al, a2, a, are empirical con- 
stants and r] = ($/€)*, v is the fluid kinematic viscosity and e is the turbulent energy 
dissipation per unit mass. The spectrum (26) is proportional to k4 for small k and 
exhibits a Kolmogorov-type decay, k-*, for large k or an exponential cut-off at  the 
dissipation-scale wavenumbers (ky - O( I)) ,  depending on the particular case. Helland 
et al. (1977) have tested (26) successfully by fitting the data obtained in two inde- 
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FIQURE 4. Three-dimensional normalized turbulence energy spectrum for 
Snyder t Lumley’s experiment. 

pendent grid turbulence experiments. The data of Snyder & Lumley were extrapolated 
by integrating (26) (Hinze 1959) , 

and choosing the constants a,, a2 and a3 to minimize the mean-square deviation from 
the normalized experimental transverse spectrum. The three-dimensional spectrum is 
depicted in figure 4. 

A major disadvantage of the turbulent field described by Snyder & Lumley is 
the large-scale non-homogeneity along the testing channel, which is translated into 
8 non-stationarity of the turbulence along a particle trajectory. There existed a 
considerable decay of the intensity with distance, typical for grid-produced turbulence 
in wind tunnels. Nevertheless, the spectral distribution of the ambient energy 
appeared from the experimental data to be self-similar. Thus, approaching the 
problem of turbulent decay along the particle trajectory on the basis of quasi- 
stationarity appears unavoidable. Such an approach is valid only if the particle time 
constant, characterizing the time scale during which a particle attains equilibrium 
with the surrounding local fluid, is sufficiently smaller than the representative decay 
time of the turbulent intensity. The decay time perceived by a particle suspended in 
the upward flow with a linear velocity U can be estimated as 

d In u,, 
t i 1  = (U- V ) -  

d5 ’ 
where 5 is a co-ordinate along the flow. The lowest values for the experimental con- 
ditions are t, w 0.3 s. All particle time constants, however, are still an order of magni- 
tude smaller (see y-l in table 1). Thus, a quasi-stationarity assumption along a 
particle trajectory is justified. 
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Copper particles Corn pollen particles 
(y = 20.4s-1) (y  = 50 8-l) 

Distance from the grid, 
inmeshlengths ... 41 73 171 41 73 171 

A = Y/"okll 0.94 2.09 5.17 2.31 5.13 12.7 
$-1 = V/U, 2.46 3.69 5.67 1.01 1-51 2-33 
P = Y / V k o  0.38 0.57 0.91 2.28 3.40 6.45 

k ,  corresponds to the maximum of the three-dimensional spectrum in figure 4. uo is the 
characteristic turbulent velocity, aa given by Snyder & Lumley. 

TABLE 1. Particle parameters for the experiments of Snyder t Lumley (1971). 

The next step, in view of the above distinction between the long and short time 
scales, is to examine particle velocity correlations at various positions along the 
testing channel. The most accurate approach would be to use (26) in the general 
tensorial equations (5), a route which would result in a formidable numerical integra- 
tion procedure. Indeed, such an involved procedure could be most beneficial, had the 
exact functional form of the spectral decay with time been known. However, an 
introduction of such uncertainty implies incorporation of an adjustable parameter and 
would render the test of the quasi-stationarity hypothesis impossible. This can be 
avoided by noticing that the heavier particles in Snyder & Lumley's experiments 
fall roughly into the asymptotic region uo < V (see table 1). Thus, it is possible to use 
the asymptotic expression (15) developed in $ 3  for the case p 4 1. After necessary 
rearrangements and changing to Snyder & Lumley's variables we arrive at the 
equations describing the local particle velocity correlations: 

where t is a time variable within the local (short) time scale, and Po = (svs)), V and 7 
vary only on the long time scale associated with the turbulence decay. 

When applying equations (29) to Snyder & Lumley's data it is implicitly assumed 
that the motion of the particles follows a linear drag law. In  fact the Reynolds numbers 
of all particles are O( 1)  when based on their terminal velocities in air but smaller than 
unity when calculated using the strongest turbulent velocity fluctuation. Thus, as 
indicated by Lumley (1976), a linearization of the drag law with respect to the random 
part of the relative velocity, with a tensorial drag coefficient, is appropriate. We have 
further ignored the slight anisotropy introduced by the linearization and have used 
the experimental scalar drag coefficient reported by Snyder & Lumley. 

Correlations for copper particles evaluated using (29) at different positions along 
the testing channel are shown in figure 5. In  $ 2 we have shown, for the ideal model, 
that particle correlation functions are not necessarily self-similar when the effect of 
a steady drift cannot be ignored, and that correlations may become negative depending 
on the particular values of the parameter p and p. Indeed, the plot indicates a con- 
siderable reshaping of the curves with the decaying turbulence while p and p-' 
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FIQURE 5. Asymptotic transverse particle velocity correlation functions for copper particles. 
Numbers indicate distance from the grid measured in mesh lengths. Dots correspond to Snyder 
& Lumley’s corrected fmction. 

increase more than twofold. (See table 1.) Note that the negative correlations appear 
only at the downflow positions, in consistency with the estimates in 5 2, and that this 
results in reduction of the diffusion coefficient additional to the effect of the decay 
of turbulent intensity. Snyder and Lumley measured in their experiment particle 
displacements and average velocities between adjacent sampling stations. From these 
they calculated, for each kind of particle, a single correlation curve, by continuously 
rescaling the time axis with allowance for the turbulent decay. Thus, this corrected 
function implies the incorrect assumption that particle motion decays in the same 
manner as turbulence, retaining self-similarity. Of course, their correlation function 
should not correspond to any of the locally evaluated correlations since each of the 
latter is plotted against unscaled time but is normalized with a different kinetic energy 
corresponding to position along the testing channel. This is also demonstrated for 
copper particles in figure 5. 

Before turning to large time scale integration, it should prove interesting to integrate 
equations (29) once locally, thereby obtaining the local particle diflusivities. In 
figure 6 based on the asymptotic calculations we show the variation of the transverse 
diffusivity along the particle trajectory for copper and corn pollen particles. Note 
that the diffusion coefficients exhibit a maximum at an early stage, corresponding 
to the inflection in the particle trajectory data, and then decay slowly with the 
decaying intensity of the turbulent field. 

The mean squared transverse particle displacement R,, is calculated by integrating 
the quasi-stationary correlation function 

using properly interpolated correlation functions, each being a function of the short- 
scale time, at different positions depending on the particle residence time s = (/( U - V) .  
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t (s) 
FIauRE 6. Variation of the local transverse diffusion coefficients for 

copper (CP) and corn pollen (CN) particles. 

t 6) 
FIGURE 7. Mean-squared transverse particle displacement. Snyder BE Lumley’s measurements 

for copper (0) and corn pollen ( x ) particles and asymptotically evaluated curves. 

Figure 7 shows the resulting integrated curves. For the heavy copper particles, where 
the assumption that B lies in the asymptotic region is completely justified, the agree- 
ment with the experiment is excellent. As the deviation from the asymptotic region 
increases, the calculations tend to over-estimate the actual diffusivities, as is evident 
for the corn pollen. The correct shape of the curve is preserved nonetheless. It should 
be stressed here that this remarkable agreement between the theory and the experi- 
ment is obtained without any semi-empirical or other adjustable parameters, and 
confirms the quasi-stationarity of the dispersion process. 

The authors are grateful to H. Horn for his help in the APL programming. 
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